TABLE 3.1

Studies providing information on risk of lung cancer in relation to type of cigarette smoked

Continent	Country (State)	Study name	Study title	Study type ${ }^{2}$	Period of deaths/cases
Asia	China	HU	Heilongjiang case-control study	CC	1985-87
	China	FU	Harbin case-control study	CC	1977-79
	Hong Kong	CHAN	Hong Kong case-control study	CC	1976-77
	India	NOTANI	Bombay Tata Memorial study	CC	1963-71
	India	JUSSAW	Greater Bombay case-control study	CC	1964-73
	Japan	HIRAYA	Japanese 29 Health Centre study	P	1965-81
	Japan	WAKAI	Okinawa case-control study	CC	1988-91
	Korea	CHOI	Korea case-control study	CC	1985-88
	Singapore	MACLEN	Singapore case-control study	CC	1972-73
South and	Argentina	MATOS	Buenos Aires case-control study	CC	1994-96
Central	Argentina	PEZZOT	Rosario case-control study	CC	1987-91
America	Brazil	SUZUKI	Rio de Janeiro case-control study	CC	1991-92
	Cuba	JOLY	Havana case-control study	CC	1978-80
	Uruguay	DESTEF1	First Montevideo case-control study	CC	1988-94
	Uruguay	DESTEF2	Second Montevideo case-control study	CC	1993-96
USA	California	SIDNEY	Kaiser Permanente prospective study	P	1979-91
	California	CARPEN	Los Angeles case-control study	CC	1990-94
	Louisiana	CORREA	Louisiana case-control study	CC	1979-81
	New Jersey	WILCOX	New Jersey case-control study	CC	1980-81
	New Mexico	PATHAK	New Mexico case-control study	CC	1980-82
	New York	BROSS	Roswell Park case-control study	CC	1960-66
	New York	WYNDER	Sloan Kettering case-control study	CC	1966-69
	Pennsylvania	KHUDER	Philadelphia case-control study	CC	1985-87
	Pennsylvania	WEINBE	Allegheny County study	HL	$1970^{\text {b }}$
	Texas	BUFFLE	Texas case-control study	CC	1979-82
	Multicentre	AHF1	American Health Foundation multicentre casecontrol study 1	CC	1969-76
	Multicentre	AHF2	American Health Foundation multicentre casecontrol study 2	CC	1977-95
	Multicentre	KAUFMA ${ }^{\text {c }}$	US/Canada multicentre case-control study	CC	1981-86

TABLE 3.1 (Continued)

Continent	Country (State)	Study name	Study title	Study type ${ }^{\text {a }}$	Period of deaths/cases
	Multicentre	MRFIT	Multiple risk factor intervention trial	P	1973-85
	25 states	CPSI	American Cancer Society Cancer Prevention Study I	P	1959-72
	Nationwide	CPSII	American Cancer Society Cancer Prevention Study II	P	1982-88
	Nationwide	SPEIZE	Nurses Health Study	P	1976-92
Europe	Multicentre	LUBIN	West European multicentre case-control study	CC	1976-80
(not UK)	Denmark	LANGE	Copenhagen city heart study	P	1976-89
	Finland	PERNU	Helsinki case-control study	CC	1944-58
	France	BENHAM ${ }^{\text {d }}$	French case-control study	CC	1976-80
	Italy	BERRIN ${ }^{\text {d }}$	Italian case-control study	CC	1977-80
	Austria	VUTUC ${ }^{\text {d }}$	Austrian case-control study	CC	1976-80
	Germany	JOCKEL	North West German case-control study	CC	1985-86
	Germany	KNOTH	Mannheim/Ludwigshafen/Heidelberg study	C	1967-76
	Norway	ENGELA	Norwegian part of US/UK/Norway migrant study	P	1964-93
	Poland	ZEMLA	Gliwice case-control study	CC	Not stated
	Spain	AGUDO	Barcelona case-control study	CC	1989-92
	Spain	ARMADA	Second Barcelona case-control study	CC	1986-90
UK	England	ALDERS	Multicentre case-control study 1977-82	CC	1977-82
	England	BENSHL	Whitehall study	P	1967-78
	N Ireland	DEAN	Northern Ireland case-control study	CC	1960-62
	England	DEAN2	North-East England case-control study	CC	1963-72
	England	DOLL1	Multicentre case-control study 1948-52	CC	1948-52
	Scotland	HAWTHO ${ }^{\text {e }}$	West Central Scotland prospective study	P	1965-77
	Scotland	GILLIS	West Central Scotland case-control study	CC	1976-81
	Nationwide	MIGRAN ${ }^{\text {e }}$	British part of US/UK/Norway migrant study	P	1964-77
	England	RIMING	Mass radiography follow-up study	P	1970-76
	G Britain	TANG	Study of 4 British cohorts	P	1967-90

Table 3.1 (Continued 2)

Notes

${ }^{a}$ Study type: $\mathrm{CC}=$ case-control study, $\mathrm{P}=$ prospective study, $\mathrm{C}=$ case study (no controls), $\mathrm{HL}=$ comparison of risk factors in high and low risk areas.
${ }^{\mathrm{b}}$ Period for which high and low areas were identified, risk factors determined in 1978-79.
${ }^{c}$ Includes one Canadian centre.
${ }^{\text {d }}$ Part of LUBIN study.
${ }^{\text {e }}$ Some overlap with TANG study.

TABLE 3.2
Number of studies ${ }^{\text {a }}$ including lung cancer cases or deaths in specified periods

Studies	Period									
	$\begin{aligned} & 1941- \\ & 1950 \end{aligned}$	$\begin{aligned} & 1951- \\ & 1960 \end{aligned}$	$\begin{aligned} & 1961- \\ & 1965 \end{aligned}$	$\begin{aligned} & 1966- \\ & 1970 \end{aligned}$	$\begin{aligned} & 1971- \\ & 1975 \end{aligned}$	$\begin{aligned} & 1976- \\ & 1980 \end{aligned}$	$\begin{aligned} & 1981- \\ & 1985 \end{aligned}$	$\begin{aligned} & 1986- \\ & 1990 \end{aligned}$	$\begin{aligned} & 1991- \\ & 1995 \end{aligned}$	$\begin{aligned} & 1996- \\ & 1999 \end{aligned}$
Asia	0	0	3	3	4	3	3	3	1	0
South/Central America	0	0	0	0	0	1	0	2	5	2
USA	0	2	2	4	3	9	11	7	4	0
Europe - not UK	1	1	1	1	1	6	3	5	2	0
UK	1	2	4	6	6	7	3	1	0	0
Prospective	0	1	5	8	9	11	8	6	3	0
Case-control	2	4	5	6	5	15	12	12	9	2
Total	2	5	10	14	14	26	20	18	12	2

Notes
${ }^{a}$ Omitting studies WEINBE, KNOTH, ZEMLA.

TABLE 3.3

Lung cancer cases in the $\mathbf{5 4}$ studies

Study	Number of lung cancers ${ }^{\text {a }}$		Histological confirmation	Results by histological type	$\begin{gathered} \text { Proxy } \\ \text { interviews } \\ \hline \end{gathered}$
	Men	Women			
Asia					
HU	161	66	100\%	No	No
FU			Not required	No	100\%
CHAN	208	189	54\%	No	No
NOTANI	683	-	$42 \%{ }^{\text {b }}$	No	No
JUSSAW	792	-	$41 \%{ }^{\text {b }}$	No	No
HIRAYA	1454	463	No: DC ${ }^{\text {c }}$	No	$N A^{\text {d }}$
WAKAI	245	88	100\%	Yes	No
CHOI	280	95	$100 \%{ }^{\text {b }}$	No	No
MACLEN	147	86	Not required	No	No

South and Central America

MATOS	200	-	94.5%	Yes	No
PEZZOT	215	-	100%	Yes	No
SUZUKI	99	24	100%	No	No
JOLY	607	219	1000^{b}	No	No
DESTEF1	497	-	100%	Yes	No
DESTEF2	427	-	85%	Yes	No

USA

SIDNEY	318		Not required	No	$N^{\text {d }}$
CARPEN		353		Not required	No

TABLE 3.3 (Continued)

Study	Number of lung cancers Men Women		Histological confirmation	Results by histological type	Proxy interviews
USA (continued)					
BUFFLE	475	460	100%	No	84%
AHF1	1051	314	100%	Yes	No
AHF2	Large $^{\mathrm{f}}$		Large $^{\mathrm{f}}$	100%	Yes

Europe (not UK)

LUBIN	6920	884	100%	Yes	No
LANGE	200	68	No: DC^{c}	No	NA $^{\mathrm{d}}$
PERNU	1477	129	50%	No	No
BENHAM	1625	96	100%	Yes	No
BERRIN	1101	-	100%	No	No
VUTUC	252	297	100%	No	No
JOCKEL	146	48	Not required	No	No
KNOTH	733	59	$100 \%{ }^{\text {b }}$	102	80%
ENGELA	333	-	Not required	No	100%
ZEMLA	210	103	98%	Yes	N^{d}
AGUDO	-	-	100%	No	No
ARMADA	325		No	No	

UK

ALDERS	1025	676	Not required	Yes	No
BENSHL	193	-	No: DC ${ }^{\text {c }}$	No	NA $^{\text {d }}$
DEAN	803	151	Not required	No	100%
DEAN2	616	150	Not required	No	100%
DOLL1	1357	108	70%	No	No

TABLE 3.3 (Continued 2)

Study	Number of lung cancers ${ }^{\text {a }}$		Histological confirmation	Results by histological type	Proxy interviews
	Men	Women			
$\underline{\text { UK (continued) }}$					
HAWTHO	104	<28	No: DC ${ }^{\text {c }}$	No	$\mathrm{NA}^{\text {d }}$
GILLIS	656	-	77\%	No	No
MIGRAN	136	23	No: DC ${ }^{\text {c }}$	No	$N A^{\text {d }}$
RIMING	104	-	Not required	No	$N A^{\text {d }}$
TANG	836	-	No: DC ${ }^{\text {c }}$	No	$N A^{\text {d }}$

Notes
${ }^{\text {a }}$ Numbers of lung cancers usually relate to totals in study; in some studies they relate to smokers analyzed.
Numbers between columns relate to sexes combined.
${ }^{\text {b }} \%$ confirmed by histology or cytology.
${ }^{\mathrm{c}} \mathrm{DC}=$ death certificates.
${ }^{\mathrm{d}} \mathrm{NA}=$ not applicable.
${ }^{\mathrm{e}} \%$ confirmed by histology, cytology or death certificates
${ }^{\mathrm{f}}$ Numbers vary in papers depending on period and hospitals included.
${ }^{g}$ In first 6 years of follow up.
${ }^{h}$ Not given.

TABLE 3.4

Controls (or populations at risk) in the $\mathbf{5 4}$ studies

Study	Number of controls ${ }^{\text {a }}$		Type of control ${ }^{\text {b }}$	Matching factors	$\begin{gathered} \text { Proxy } \\ \text { interviews } \end{gathered}$
	Men	Women			
Asia					
HU	161	66	Hospital: not CA or RD	Age, area	No
FU	523		Decedent: not RD	Age, area	100\%
CHAN	208	189	Hospital: orthopaedic	Age group, hospital	No
NOTANI	1279	-	Hospital: not CA or RD	Age, community	No
JUSSAW	792	-	Population: Voters List	Age, community	No
HIRAYA	(122261)	(142857)	Prospective study	$N A^{c}$	No
WAKAI	490	176	Population: Voters List	Age, residence	No
CHOI	560	190	Hospital: not CA or SAD	Age, date, area	No
MACLEN	134	166	Hospital: not SAD	Age, dialect, ward	No
South and Central America					
MATOS	397	-	Hospital: not SAD	Age, hospital	No
PEZZOT	433	-	Hospital: not SAD	Age, hospital	No
SUZUKI	99	24	Hospital: not CA or RD	Age, race	No
JOLY	1518		Hospital: not SAD (979) and Neighbourhood (539)	Age, race, hospital, date, area ${ }^{\text {d }}$	No
DESTEF1	497	-	Hospital: not SAD ${ }^{\text {e }}$	Age, residence, urban/rural status	No
DESTEF2	427	-	Hospital: not SAD	Age residence	No
USA					
SIDNEY	(34975)	(44791)	Prospective study	NA	No
CARPEN	724		Population: Licensed drivers and Medicare beneficiaries	Age, race	No
CORREA	1393		Hospital: not COPD, SAC	Age, race, hospital	11\%
WILCOX	900	-	Population: Licensed drivers and Death Certificate files	Age, race, area, date death/diagnosis	37\%
PATHAK	338	462	Population: Telephone sampling and Medicare participants	Age, race	No

TABLE 3.4 (Continued)

TABLE 3.4 (Continued 2)

Study	Number of controls Men Women	Type of control		Matching factors	Proxy interviews
UK					
ALDERS	1025	676	Hospital: not SAD	Age, region, hospital ward, date of diagnosis	No
BENSHL	(17475)	-	Prospective study	NA $^{\mathrm{c}}$	

Notes
${ }^{\text {a }}$ Numbers of controls usually relate to totals in study; in some studies they relate to smokers analyzed. Bracketed numbers indicate size of baseline populations in prospective studies.
Numbers between columns relate to sexes combined.
${ }^{\mathrm{b}} \mathrm{CA}=$ cancer, $\mathrm{RD}=$ respiratory disease, $\mathrm{SAD}=$ smoking associated disease, $\mathrm{SAC}=$ smoking associated cancer, COPD = chronic obstructive pulmonary disease.
${ }^{\text {c }}$ NA $=$ not applicable.
${ }^{\text {d }}$ Hospital and date for hospital controls, area for neighbourhood controls.
${ }^{\text {e }}$ Diseases not associated with maté in one study.
${ }^{\mathrm{f}}$ Numbers vary in papers depending on period and hospitals included.
g Controls selected as "aged".
${ }^{h}$ One member of each household answered for all residents.

TABLE 3.5

Aspects of cigarette type considered

Study	Filter/ plain	Tar level	Hand rolled/ manufactured	Black/ blond ${ }^{\text {a }}$	Other
Asia					
HU			T		
FU			T		
CHAN			T		
NOTANI					Bidis/cigarettes
JUSSAW					Bidis/cigarettes
HIRAYA	T				
WAKAI	T				Local/other brands
CHOI	T				
MACLEN			T		
South and Central America					
matos	T			T	
PEZZOT	T			T	
SUZUKI				T	
JOLY				T	
DESTEF1	T		T	T	
DESTEF2	T		T	T	
USA					
SIDNEY	T	T			Menthol/nonmenthol
CARPEN					Menthol/nonmenthol
CORREA	T				
WILCOX		T			
PATHAK	T				
BROSS	T				
WYNDER	T				
KHUDER	T				
WEINBE	T	T			

TABLE 3.5 (Continued)

Study	Filter/ plain	Tar level	Hand rolled/ manufactured	Black blond a	Other
USA (continued)					
BUFFLE	T		T		
AHF1	T				
AHF2	T	T			Menthol/nonmenthol
KAUFMA		T			
MRFIT	T	T			Nicotine level
CPSI		$\mathrm{T}^{\text {b }}$			
CPSII	T	T			
SPEIZE		T			
Europe (not UK)					
LUBIN	T	T			
LANGE	T				
PERNU					Pilli/Pölli
BENHAM	T	T	T	T	
BERRIN	T			T	
VUTUC		T			
JOCKEL	T				
KNOTH	T				
ENGELA	T		T		
ZEMLA	T				
AGUDO	T			T	
ARMADA	T			T	
UK					
ALDERS	T	T	T		
BENSHL		T			
DEAN	T				
DEAN2	T				
DOLL1	T				
HAWTHO	T		T		

TABLE 3.5 (Continued 2)

Study	Filter/ plain	Tar level	Hand rolled/ manufactured	Black/ blond	Other
UK (continued)					
GILLIS		T			
MIGRAN	T		T		
RIMING	T				
TANG	T	T			
Notes a Includes dark/light.					
b Categories based on tar and nicotine.					

TABLE 3.6
Potential confounding variables adjusted for ${ }^{\text {a }}$

Study	$\begin{aligned} & \text { O} \\ & \text { Z } \\ & \hline \end{aligned}$	品	$\begin{aligned} & \text { 完 } \\ & \stackrel{0}{0} \\ & 0 \\ & .0 \\ & .0 \\ & \text { Z } \end{aligned}$							$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		\＃ 0 0 0 0 0 0 $\#$	$\begin{aligned} & \stackrel{\rightharpoonup}{む} \\ & \stackrel{0}{0} \end{aligned}$
Asia													
HU	T												
FU	T												
CHAN	T												
NOTANI	T												
JUSSAW			T	T									Religion
HIRAYA	$\mathrm{T}^{\text {b }}$												
WAKAI		T	T			T	T						Fraction smoked／cig． Type of cigarette
CHOI	T												
MACLEN	T												
South and Central America													
MATOS		T	T										Hospital
PEZZOT		T	T	T								T	
SUZUKI		T			T				T				
JOLY	T												
DESTEF1		T								T	T		
DESTEF2		T								T	T		Family LC history ${ }^{\text {c }}$ ， body mass index
USA													
SIDNEY		T	T	T					T		T		
CARPEN		T			T		T		T				
CORREA		T	T						T				Hospital
WILCOX		T	T	T	T								
PATHAK		T	T	T	T				T				
BROSS			T	T									
WYNDER			T										
KHUDER	T												
WEINBE		T											

TABLE 3.6 (Continued)

Study	$\stackrel{0}{\mathrm{Z}}$	品		$\begin{aligned} & \text { 麌 } \\ & \text { By } \end{aligned}$	$\begin{aligned} & \frac{0}{5} \\ & \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { en } \end{aligned}$:				¢
USA (continued)													
BUFFLE	T												
AHF1		T	T	T									
AHF2		T	T	T				T			T		Age at switch to filter
KAUFMA		T	T			T			T	T	T	T	
MRFIT		T	T								T		Blood pressure, cholesterol
CPSI		T	T			T			T	T			Occup. exposure, History LC \& HD ${ }^{\text {c, }}$
CPSII		T	T					T					
SPEIZE		T	T			T							
Europe (not													
LUBIN			T	T			T						
LANGE		T			T								
PERNU	T												
BENHAM		T	T	T							T		Current/ex Type of cigarette
BERRIN		T	T				T			T			Type of cigarette
vutuc		T	T	T									
JOCKEL		T											
KNOTH	T												
engela		T											
zemla	T												
agudo		T								T			Hospital
ARMADA		T	T	T	T						T		Filter/plain, blond/black
UK													
ALDERS		T	T										
BENSHL		T									T		
DEAN	T												
DEAN2		T	T					T					
DOLL1	T												
Hawtho		T	T										

TABLE 3.6 (Continued 2)

Study	8					$\begin{aligned} & \text { E } \\ & \text { 兑 } \\ & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & \ddot{\ddot{\sim}} \\ & \text { 年 } \end{aligned}$				\#
UK (continued)												
GILLIS		T										
MIGRAN	T	T			T		T					
RIMING	T	T										
TANG		T										Study

Notes
${ }^{\mathrm{a}}$ Not all analyses took into account all variables stated.
${ }^{\mathrm{b}}$ Not stated which, if any, variables were adjusted for.
${ }^{\mathrm{c}} \mathrm{LC}=$ lung cancer.
${ }^{\mathrm{d}} \mathrm{CHD}=$ coronary heart disease.

TABLE 5.1

Details of studies providing evidence on risk of lung cancer in filter and plain cigarette smokers

TABLE 5.1 (Continued)

TABLE 5.1 (Continued 2)

TABLE 5.1 (Continued 3)

Other study (comparison of average age at death in filter and plain cigarette smokers)

| KNOTH | Current cigarette | Brand last smoked -
 Germany
 3 cities | smokers in 1967-1976 |
| :--- | :--- | :--- | :--- | :--- |\quad Plain \quad Filter

[^0]TABLE 5.2
Relative risk ($\mathbf{9 5 \%} \mathbf{C I}$) of lung cancer in filter and plain cigarette smokers

Adjustment factors	Number of cases ${ }^{\text {a }}$	Sex		Relative risk (95\% CI)
Prospective studies				
HIRAYAMA (Hirayama, 1984)				
Not stated	Not stated	Not stated	$\begin{gathered} \frac{\text { Plain }}{1.00} \\ \text { umably } \end{gathered}$	$\begin{aligned} & \frac{\text { Filter }}{0.51} \\ & \text { ificant as large study) } \end{aligned}$

SIDNEY (Sidney et al, 1993)

	Mge, race,	98 M	Male		$\frac{\text { Plain }}{1.00}$	$1.03 \underline{(0.61-1.75)}$	
education, cigs/day, duration	83 F	Female		1.00	$0.65(0.32-1.31)$		
				$\underline{0}$	$\underline{1-9}$	$\underline{10-19}$	$\underline{20+\text { years }}$ filter
	93 M	Male	1.00	$0.72(0.30-1.76)$	$0.93(0.50-1.75)$	$1.04(0.58-1.87)$	
	73 F	Female	1.00	$1.08(0.45-2.59)$	$0.70(0.33-1.49)$	$0.36(0.18-0.75)$	

MRFIT (Ockene et al, 1990)

Age, cigs/day, age start, tar, nicotine, alcohol,	106 M	Male	$\frac{\text { Plain }}{1.00}$

CPSII (Garfinkel and Stellman, 1988)

Age, cigs/day, inhalation	$1006 \mathrm{~F}^{\mathrm{b}}$	Female	$\frac{\text { Filter } 40 \% \text { or less }}{1.00}$	$\frac{\text { Filter only }}{0.66(0.57-0.78)}$

CPSII (Thun and Heath, 1997)

Age $1783 \mathrm{M} \quad$ Male $\quad \frac{\text { Only plain }}{1.00} \quad$| Mixed |
| :---: |$\quad \frac{\text { Filter only }}{0.45(0.4-0.5)^{\text {c }}}$

LANGE (Lange et al, 1992)

			$\frac{\text { Plain }}{}$	
Age, pack-years	90 M	Maler	1.0	$0.9(0.6-1.4)$
	39 F	Female	1.0	$0.7(0.4-1.4)$

TABLE 5.2 (Continued)

| Adjustment
 factors | Number
 of cases |
| :--- | :--- | :--- | :--- |

Prospective studies (continued)
ENGELA (Engeland et al, 1996)

Age	
	45 M
24 F	

$\frac{\text { Only plain }}{}$	$\frac{\text { Mixed }}{1.00}$	
0.00	$\frac{\text { Only filter }}{0.67(0.30-1.43)}$	
1.00	$2.09(0.47-9.31)$	$0.91(0.41-2.03)$

HAWTHO (Hawthorne et al, 1978)

			$\frac{\text { Plain }}{}$	$\frac{\text { Filter }}{}$
Age, cigs/day	88 M	Male	1.00	$0.83(0.53-1.31)$
	$<20 \mathrm{~F}$	Female	1.00	$1.29(\mathrm{NS})$

MIGRAN (Lee, 1979)

			$\frac{\text { Plain }}{1.00}$	$\frac{\text { Filter }}{1.16(0.78-1.73)}$
Age, cigs/day	104 M	Male	Female	1.00
	23 F		$1.00(0.42-2.38)$	
		Male	1.00	$1.13(0.75-1.70)$
Age, cigs/day, inhalation, age at start	21 F	Female	1.00	$0.92(0.38-2.23)$

RIMING (Rimington, 1981)

			$\underline{\text { Plain }}$	$\underline{\text { Filter }}$
Age	104 M	Male	1.00	$0.65(0.44-0.96)$
Age, cigs/day	104 M	Male	1.00	$0.62(0.42-0.91)$

TANG (Tang et al, 1995)
Age, study,
cigs/day $\quad 366 \mathrm{M} \quad$ Male $\quad \frac{\text { Plain }}{1.00} \quad \frac{\text { Filter }}{0.94(0.75-1.18)}$

Case-control studies
WAKAI (Wakai et al, 1997)
Age, cigs/day, $\quad 179 \mathrm{M} \quad$ Male $\quad \frac{\text { Plain }}{1.00} \quad \frac{\text { Filter }}{1.02(0.31-3.33)}$

TABLE 5.2 (Continued 2)

Adjustment factors	Number of cases	Sex	Relative risk (95\% CI)

Case-control studies (continued)
CHOI (Choi et al, 1989)

None			Only plain	Mixed	Only filter
	267M	Male	1.00	0.09(0.02-0.40)	0.06 (0.01-0.30)
	19F	Female	1.00	0.00 (NS)	0.00 (NS)

MATOS (Matos et al, 1998)

	Male	Mainly plain	Mainly filter	
Age, hospital,	185 M	Current	1.00	
cigs/day, years		Ex	1.00	$3.33(0.11-1.11)$
since quit	All	1.00	$1.25(0.67-2.50)$	
		Black only	1.00	$1.67(0.36-10.0)$
		Blond only	1.00	$1.67(0.71-5.0)$

PEZZOT (Pezzotto et al, 1993)

		Mainly plain	Mainly	
Age, hospital	211 M	Male	1.00	
filter				
Age, hospital, cigs/day	211 M	Male	1.00	$0.29(0.20-0.34)$

DESTEF1 (DeStefani et al, 1996a)

	Male	Ever plain	Always filter	
Age, residence, urban/rural status, education	470 M			$0.72(0.54-0.96)$

DESTEF2 (DeStefani et al, 1996b)

Age, sex,	300M	Male	$\frac{\text { Plain }}{1.00}$	$\frac{\text { Filter }}{0.73(0.51-1.05)}$
residence, urban/rural				
status, education, BMI and family				
history of lung				

TABLE 5.2 (Continued 3)

Adjustment factors	Number of cases	Sex	Relative risk (95\% CI)

Case-control studies (continued 2)
CORREA (Correa et al, 1984)

Age and sex	$1338 \mathrm{M}+\mathrm{F}^{\mathrm{b}} \quad$Male + Female	$\frac{\text { Plain }}{1.00} \quad \frac{\text { Filter }}{0.55(0.35-0.85)}$

PATHAK (Pathak et al, 1986)

		Male + female	\% years smoked filter used				
			$\underline{0}$	1-33	34-66	67-99	100
Age, sex, race, cigs/day,	$\begin{gathered} \text { 205M, } \\ 106 \mathrm{~F} \end{gathered}$	Nonhispanics	1.00	0.83	0.58	0.71	0.80
duration, cigs/day x		Hispanics	1.00	0.56	0.39	$\begin{aligned} & 0.26 \\ & (\mathrm{p}<0.05) \end{aligned}$	$\begin{aligned} & 0.04 \\ & (\mathrm{p}<0.05) \end{aligned}$
duration					(CI n	able)	

BROSS (Bross and Gibson, 1968; Bross 1968)

Cigs/day, duration			$\frac{\text { Plain }}{}$	Filter
Cigs/day	265 M	Males	1.00	$0.56(0.37-0.81)$
Duration	265 M	Males	1.00	$0.57(0.39-0.85)$
	265 M	Males	1.00	$0.59(0.39-0.89)$

WYNDER (Wynder, 1972)

Cigs/day $226 \mathrm{M} \underset{$\begin{tabular}{c}
Males

(Kreyberg I)

$}{ }$

Plain

1.00
\end{tabular}$\frac{\text { Filter (10+ years) }}{0.51(0.34-0.76)}$

KHUDER (Khuder et al, 1998)

None $\quad 457 \mathrm{M} \quad$ Males \quad\begin{tabular}{l}
Always

plain

Ever

filter
\end{tabular}

BUFFLE (Buffler et al, 1984)

None			$\frac{\text { Plain }}{}$	$\frac{\text { Filter }}{0.92}$
	457 M,	Males	1.00	1.17
$460 \mathrm{~F}^{\mathrm{b}}$	Females	1.00	(CI not available)	

BUFFLE (Ives, 1984)

	Always plain	Females	$\frac{1.00}{\text { Mixed }}$	Always None$\quad 208 \mathrm{~F}$

TABLE 5.2 (Continued 4)

| Adjustment
 factors | Number
 of cases |
| :--- | :--- | :--- | :--- |

Case-control studies (continued 3)
AHF1 (Wynder and Stellman, 1977)

		Always plain	Switched to F ≤ 10 years ago	Switched to F None	Males
	690M	1.00	$\frac{10+\text { years ago }}{1.12(0.87-1.44)}$	$0.89(0.71-1.11)$	
	186 F	Females	1.00	$0.90(0.47-1.72)$	$0.61(0.35-1.05)$

AHF2 (Stellman et al 1997)

		Always	Always	
		Males	plain	$\frac{\text { Switched to F }}{}$

AHF2 (Kabat, 1996)

			Always plain	Switched to F Switched to F	Always Al-9 years	$\frac{10+\text { years }}{}$

AHF2 (Wynder and Muscat, 1995)

			Always	Switched to	Switched to	Switched to	Always
			plain	F 1-9 years	F 10-20 years	F 21+ years	
Age	1414M	Males	1.00	1.00(0.71-1.41)	1.03(0.78-1.37)	0.90(0.63-1.29)	0.67(0.46-0.97)
Age	885 F	Females	1.00	1.01(0.55-1.85)	0.77(0.46-1.31)	1.09(0.63-1.90)	0.55(0.33-0.93)

LUBIN (Lubin et al, 1984a)

		Always plain		Mixed	Always	
filter						
Duration, years of cessation	6626 M	Males	1.00		$0.89(0.92-0.96)$	$0.56(0.47-0.66)$
Cigs/day, years of cessation	6626 M	Males	1.00		$1.00(0.91-1.10)$	$0.48(0.40-0.56)$
Duration, years of cessation	551 F	Females	1.00		$0.72(0.36-1.44)$	$0.40(0.19-0.83)$
Cigs/day, years of cessation	551 F	Females	1.00		$1.00(0.54-1.87)$	$0.43(0.22-0.85)$

TABLE 5.2 (Continued 5)

Adjustment factors	Number of cases	Sex	Relative risk (95\% CI)

Case-control studies (continued 4)
BENHAM (Benhamou et al, 1994)

		Always plain	$\frac{\text { Mixed }}{1.00(0.79-1.27)}$	$\frac{$ Always }{ filter }	$0.63(0.35-1.10)$
Cigs/day, duration,	1114 M	Males	1.00		
inhalation, current use, tobacco type, tar Age	1114 M	Males	1.00	$1.00(0.84-1.19)$	$0.38(0.24-0.62)$

BENHAM (Benhamou et al, 1989)

			Always		Always
Age, cigs/day,			$\underline{\text { plain }}$	Mixed	
duration	1030M	Males	1.00	0.95 (0.76-1.18)	0.70 (0.52-0.94)

BENHAM (Benhamou et al, 1987)

Age, hospital,					
Anterviewer	46 F	Females	Always plain	$\underline{1.00}$	$\underline{0.45(0.09-2.23)}$

BERRIN (Benhamou and Benhamou, 1993)

Age, cigs/day,		Always current smoking,	1101 M	Males	1.00

JOCKEL (Jockel et al, 1992)

Age			Plain	Filter
1.00	Males			
0.41	$(0.21-0.81)$			

ZEMLA (Zemla et al, 1988)

None	$210 \mathrm{M}^{\text {b }}$	Males	Plain	$\underline{\text { Filter }}$
		Unexposed	1.00	0.97
		to dust		
		Exposed to	1.00	3.57
		dust	(CI n	

TABLE 5.2 (Continued 6)

Adjustment factors	Number of cases	Sex	Relative risk (95\% CI)

Case-control studies (continued 5)
AGUDO (Agudo et al, 1994)

Age, hospital,	22F	Ever town of	Females	plain 1.00

ARMADA (Armadans-Gil et al, 1999)

Age, pack-years	317M	Males	Always $\frac{\text { plain }}{1.00}$	$\frac{\text { Mixed }}{1.00(0.60-1.60)}$	Always filter $\overline{0.70(0.40-1.20)}$
Age, pack-years	267M	Males	$\begin{aligned} & \begin{array}{l} \text { Ever } \\ \text { plain } \end{array} \\ & \hline 1.00 \end{aligned}$	Always $\frac{\text { filter }}{0.40(0.30-0.70)}$	(last 20 years)
Age, pack-years, SES, black/blond			1.00	0.40(0.20-0.70)	
Age, cigs/day, SES, duration, black/blond			1.00	0.41(0.30-0.70)	

ALDERS (Alderson et al, 1985)

Age, cigs/day three years before admission	$\begin{gathered} 312 \mathrm{M} \\ 410 \mathrm{~F} \end{gathered}$	Males Females	$\begin{aligned} & \begin{array}{l} \text { Always } \\ \text { plain } \end{array} \\ & \hline 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \text { Ever } \\ & \frac{\text { filter }}{1.20(0.83-1.73)} \end{aligned}$		
	$\begin{aligned} & 312 \mathrm{M} \\ & 410 \mathrm{~F} \end{aligned}$	Males Females	Ever $\frac{\text { plain }}{1.00}$ 1.00	$\begin{aligned} & \text { Always } \\ & \text { filter } \\ & \hline 1.48(0.85-2.57) \\ & 0.66(0.47-0.92) \end{aligned}$		
			Always plain	Switched to F 1-9 years	Switched to F $10+\text { years }$	Always filter
	312M	Males	1.00	1.13(0.65-1.97)	1.09(0.73-1.63)	1.48(0.81-2.69)
	410F	Females	1.00	1.04 (0.54-1.99)	1.41(0.86-2.31)	0.85(0.52-1.38)

DEAN (Wicken, 1966)

			Plain	Filter None
	678 M	Males	1.00	$0.97(0.50-1.86)$
	62 F	Females	1.00	$3.12(0.65-15.0)$

TABLE 5.2 (Continued 7)

Adjustment factors	Number of cases	Sex	Relative risk (95\% CI)

Case-control studies (continued 6)
DEAN2 (Dean et al, 1997, with supplement)

		Males	Plain	Filter
Age	318M		1.00	0.52 (0.38-0.71)
Age, cigs/day			1.00	0.54 (0.40-0.73)
Age, inhalation			1.00	0.55 (0.41-0.74)
Age, cigs/day, inhalation			1.00	0.54 (0.40-0.73)
Age	96F	Females	1.00	0.69 (0.43-1.12)
Age, cigs/day			1.00	0.68 (0.42-1.11)
Age, inhalation			1.00	0.86 (0.53-1.40)
Age, cigs/day,			1.00	0.82 (0.50-1.33)

			Always plain	Switched to F	Always filter
Age	262M	Males	1.00	0.57 (0.41-0.79)	0.32 (0.19-0.54)
Age, cigs/day			1.00	0.59 (0.43-0.82)	0.35 (0.21-0.59)
Age	81F	Females	1.00	0.95 (0.56-1.60)	0.31 (0.16-0.62)
Age, cigs/day			1.00	0.98 (0.58-1.65)	0.32 (0.16-0.64)

DOLL (Doll and Hill, 1952)

		Always plain	Ever None
	504 M	Males	1.00

Other studies

WEINBE (Weinberg et al, 1982)

None | $378 \mathrm{HR}^{\mathrm{d}}$ |
| :---: |
| 607 LR |\quad Males $\quad 8.9 \%$ higher $(\mathrm{p}<0.05)$ in low risk area (South Hills)

KNOTH (Knoth et al, 1983)

	497M	Males	Plain	Filter
			Average age at death (CI)	
None			62.6 (61.1-63.3)	60.6 (59.6-61.7)
			($\mathrm{p}=0.0$	

[^1]TABLE 5.3

Relative risk ($\mathbf{9 5 \%} \mathbf{\%} \mathbf{C I}$) of lung cancer in relation to filter and plain cigarette smoking (using the most extreme groups for comparison where more than two groups were compared) ${ }^{\text {a }}$

Study	Base group	Comparison group	Relative risk (95\% CI)
Males			
ALDERS	Always plain	Always filter	1.48(0.81-2.69)
MATOS	Mainly plain	Mainly filter	1.25(0.67-2.50)
MIGRAN	Plain	Filter	1.13(0.75-1.70)
SIDNEY	Always plain	$20+$ years filter	1.04(0.58-1.87)
WAKAI	Plain	Filter	$1.02(0.31-3.33)$
DEAN	Plain	Filter	0.97(0.50-1.86)
TANG	Plain	Filter	0.94(0.75-1.18)
AHF2	Always plain	Always filter	0.92(0.65-1.29)
LANGE	Plain	Filter	0.90(0.60-1.40)
AHF1	Always plain	Switched to F 10+ yrs ago	0.89(0.71-1.11)
HAWTHO	Plain	Filter	0.83(0.53-1.31)
DESTEF2	Plain	Filter	0.73 (0.51-1.05)
DESTEF1	Ever plain	Always filter	0.72(0.54-0.96)
ENGELA	Only plain	Only filter	0.67(0.30-1.43)
BENHAM	Always plain	Always filter	0.63 (0.35-1.10)
RIMING	Plain	Filter	0.62(0.42-0.91)
BROSS	Plain	Filter	0.56(0.37-0.81)
MRFIT	Plain	Filter	0.53(0.24-1.17)
WYNDER	Plain	Filter 10+ years	0.51(0.34-0.76)
LUBIN	Always plain	Always filter	0.48(0.40-0.56)
KHUDER	Always plain	Ever filter	0.46(0.37-0.59)
CPSII	Only plain	Only filter	$0.45(0.40-0.50)^{\text {b }}$
JOCKEL	Plain	Filter	0.41(0.21-0.81)
ARMADA	Ever plain	Always filter (in 20 yr period)	0.41(0.30-0.70)
DEAN2	Always plain	Always filter (in 15 yr period)	0.35(0.21-0.59)
PEZZOT	Mainly plain	Mainly filter	0.29(0.20-0.42)
DOLL	Always plain	Ever filter	0.18(0.05-0.63)
CHOI	Only plain	Only filter	0.06(0.01-0.30)

TABLE 5.3 (Continued)

TABLE 5.3 (Continued 2)

[^2]TABLE 5.4
Relative risk ($\mathbf{9 5 \%} \mathbf{~ C I}$) of lung cancer in filter and plain cigarette smokers - by histological type

Adjustment factors	Sex	Histological type		Relative risk (95\% CI)
WAKAI (Wakai et al, 1997)				
Age, cigs/day., age start inhalation, fraction smoked per cig	Male	Sq. carcinoma Adenocarcinoma	$\begin{aligned} & \frac{\text { Plain }}{1.00} \\ & 1.00 \end{aligned}$	$\begin{array}{ll} & \text { Filter } \\ 0.45 & (0.14-1.52) \\ 4 & \text { (NS) } \end{array}$
MATOS (Matos et al, 1998)				
Age, hospital, cigs/day, years since quit	Male	Sq. carcinoma Adenocarcinoma	$\begin{aligned} & \begin{array}{l} \text { Mainly } \\ \text { plain } \end{array} \\ & \hline 1.00 \\ & 1.00 \end{aligned}$	Mainly filter$0.71(0.27-1.67)$$1.43(0.63-3.33)$
PEZZOT (Pezzotto et al, 1993)				
Age, hospital, cigs/day	Male	Sq. carcinoma Adenocarcinoma Small cell	Always $\frac{\text { plain }}{1.00}$ 1.00 1.00	Ever filter $0.20(0.11-0.37)$ $0.38(0.19-0.75)$ $0.25(0.10-0.61)$

CORREA (Falk et al, 1992)

			Only plain	Mixed	Only filter
Cigs/day	Male + Female	Bronchioalveolar carcinoma	1.00	0.77 (0.22-2.69)	0.25 (0.02-2.87)

WYNDER (Wynder, 1972)
$\frac{\text { Plain }}{1.00} \quad \frac{\text { Filter }(10+\text { years })}{0.51(0.34-0.76)}$

TABLE 5.4 (Continued)

	Histological type				
Adjustment factors	Sex			Relative risk (95\% CI)	

AHF1 (Wynder and Stellman, 1979)

			Always plain	Switched to F $10+$ years ago
Cigs/day and duration	Male	Kreyberg I	1.00	$0.84(0.65-1.09)$
Age and cigs/day	Female	Kreyberg 1	1.00	$0.78(0.40-1.49)$
	Male	Kreyberg I	1.00	$0.79(0.61-1.03)$
	Female	Kreyberg I	1.00	$0.73(0.38-1.39)$

AHF2 (Stellman et al, 1997)

Age, cigs/day, education	Male		Always plain	Switched to F	Always filter
		Sq. carcinoma	1.0	0.9(0.7-1.2)	0.8(0.5-1.2)
		Adenocarcinoma	1.0	$1.0(0.8-1.3)$	1.0(0.7-1.5)
	Female	Sq. carcinoma	1.0	0.6(0.3-1.0)	0.4(0.2-0.8)
		Adenocarcinoma	1.0	1.2(0.7-2.0)	0.9(0.5-1.7)

AHF2 (Kabat, 1996)

Age, cigs/day, education, inhalation	Male		Always plain	Switched to F $1-9$ yrs ago	Switched to F $10+\mathrm{yrs} \text { ago }$	Always filter
		Kreyberg I	1.0	0.8(0.6-1.2)	0.7(0.5-0.9)	$\overline{0.7(0.4-1.3)}$
		Kreyberg II	1.0	1.0(0.6-1.5)	0.8(0.5-1.2)	0.9(0.4-1.5)
	Female	Kreyberg I	1.0	$1.0(0.5-2.0)$	0.7(0.4-1.4)	0.6(0.3-1.4)
		Kreyberg II		1.0	1.0(0.8-0.3)	1.0(0.6-1.5)

AHF2 (Wynder and Muscat, (1995)

Age	Male		Always plain	Switched to F $1-9 \mathrm{yrs} \text { ago }$	Switched to F $10-20 \mathrm{yrs}$ ago	Switched to F $\underline{21+\mathrm{yrs} \text { ago }}$	Always filter
		Sq. carcinoma	1.00	$\begin{aligned} & 1.10 \\ & (0.73-1.65) \end{aligned}$	$\begin{aligned} & 0.97 \\ & (0.70-1.35) \end{aligned}$	$\begin{aligned} & 0.93 \\ & (0.61-1.41) \end{aligned}$	$\begin{aligned} & 0.52 \\ & (0.33-0.84) \end{aligned}$
		Adenocarcinoma	1.00	$\begin{aligned} & 0.92 \\ & (0.62-1.37) \end{aligned}$	$\begin{aligned} & 1.10 \\ & (0.79-1.52) \end{aligned}$	$\begin{aligned} & 0.88 \\ & (0.58-1.33) \end{aligned}$	$\begin{aligned} & 0.81 \\ & (0.53-1.24) \end{aligned}$
	Female	Sq. carcinoma	1.00	$\begin{aligned} & 0.71 \\ & (0.34-1.48) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (0.26-0.90) \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.40-1.48) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (0.18-0.63) \end{aligned}$
		Adenocarcinoma	1.00	$\begin{aligned} & 1.26 \\ & (0.64-2.48) \end{aligned}$	$\begin{aligned} & 1.07 \\ & (0.59-1.94) \end{aligned}$	$\begin{aligned} & 1.41 \\ & (0.75-2.64) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (0.43-1.43) \end{aligned}$

TABLE 5.4 (Continued 2)

Adjustment factors	Sex	Histological type	Relative risk (95\% CI)

LUBIN (Lubin and Blot, 1984)

Duration, years of cessation	Male		Always plain	$\underline{\text { Mixed }}$	Always filter
		Sq. carcinoma	1.00	0.84(0.78-0.91)	0.53(0.45-0.62)
		Oat cell	1.00	1.15(0.99-1.34)	0.77(0.59-1.01)
		KI, unknown	1.00	1.06(0.86-1.31)	0.63(0.41-0.94)
		adenocarcinoma	1.00	1.07 (0.90-1.27)	0.71(0.52-0.99)
	Female	Sq. carcinoma	1.00	0.27(0.17-0.43)	0.15(0.09-0.26)
		Oat cell	1.00	1.43(0.70-2.91)	0.71(0.33-1.54)
		KI, unknown	1.00	$1.06(0.56-2.01)$	0.59(0.39-0.88)
		adenocarcinoma	1.00	1.36(0.66-2.83)	0.45(0.20-1.05)

BENHAMOU (Benhamou et al, 1985)

	Male	Kreyberg I	Always plain	$\frac{\text { Mixed }}{1.00}$	Always None

Cigs/day, duration,
inhalation, social class, tobacco type, current/ex,

$\mathrm{HR} /$ manuf.	Male	Kreyberg I	1.00	$0.89(0.69-1.14)$	$0.81(0.58-1.15)$

TABLE 5.5

Relative risk (95% CI) of squamous cell carcinoma (or Kreyberg I) and of adenocarcinoma (or Kreyberg II) in relation to filter and plain cigarette smoking (using the most extreme groups for comparison where more than two groups were compared) ${ }^{\text {a }}$

Study	Base group/comparison group	Sex	Relative risk (95\% CI)	
			Squamous cell carcinoma (or Kreyberg I)	Adenocarcinoma (or Kreyberg II)
WAKAI	Plain/filter	Male	0.45 (0.14-1.52)	-
MATOS	Mainly plain/mainly filter	Male	0.71 (0.27-1.67)	1.43 (0.63-3.33)
PEZZOT	Always plain/ever filter	Male	0.20 (0.11-0.37)	0.38 (0.19-0.75)
WYNDER	Plain/filter (10+ years)	Male	0.51 (0.34-0.76)	-
AHF1	Always plain/switched to F 10+ yrs ago	Male	$0.79(0.62-1.01)^{\text {b }}$	1.16 (0.83-1.63)
		Female	0.56 (0.30-1.06) ${ }^{\text {b }}$	0.68 (0.33-1.40)
AHF2	Always plain/always filter	Male	0.70 (0.40-1.30)	0.90 (0.40-1.50)
		Female	0.60 (0.30-1.40)	1.00 (0.60-1.50)
LUBIN	Always plain/always filter	Male	0.53 (0.45-0.62)	0.71 (0.52-0.99)
		Female	0.15 (0.09-0.26)	0.45 (0.20-1.05)
BENHAM	Always plain/always filter	Male	0.81 (0.58-1.15)	-
Combined estimate for all studies ($\mathrm{n}=11$)		Fixed-effects Random-effects	$\begin{aligned} & 0.56(0.50-0.62)^{\mathrm{c}} \\ & 0.50(0.37-0.67) \end{aligned}$	-
Combined estimate for studies with data available for both lung cancer types $(\mathrm{n}=8)$		Fixed-effects Random-effects	$\begin{aligned} & 0.54(0.48-0.61)^{\mathrm{d}} \\ & 0.46(0.32-0.67) \end{aligned}$	$\begin{aligned} & 0.84(0.70-1.00)^{\mathrm{e}} \\ & 0.80(0.61-1.06) \end{aligned}$

a See Tables 5.1 and 5.4 for further details of studies and analyses
b Results, unadjusted for risk factors, taken from Wynder and Stellman (1977) as results, adjusted for various factors, in Wynder and Stellman (1979) only available for Kreyberg I
c Heterogeneity chisquared 48.78 on 10 d.f. $(\mathrm{p}<0.001)$
d Heterogeneity chisquared 43.27 on 7 d.f. ($p<0.001$)
e Heterogeneity chisquared 14.49 on 7 d.f. $(p<0.05)$

TABLE 5.6

Effect of adjustment for various risk factors on relative risk (95\% CI) of lung cancer in relation to filter and plain cigarette smoking ${ }^{\text {a }}$

Study	Base group/comparison group	Sex	Adjustment factors	Relative risk (95\% CI)
MIGRAN	Plain/filter	Male	Age. cigs/day + inhalation, age of start	$\begin{aligned} & 1.16(0.78-1.73) \\ & 1.13(0.75-1.70) \end{aligned}$
		Female	Age, cigs/day + inhalation, age of start	$\begin{aligned} & 1.00(0.42-2.38) \\ & 0.92(0.38-2.23) \end{aligned}$
RIMING	Plain/filter	Male	Age + cigs/day	$\begin{aligned} & 0.65(0.44-0.96) \\ & 0.62(0.42-0.91) \end{aligned}$
PEZZOT	Mainly plain/mainly filter	Male	Age, hospital + cigs/day	$\begin{aligned} & 0.23(0.16-0.34) \\ & 0.29(0.20-0.42) \end{aligned}$
BROSS	Plain-filter	Male	Cigs/day + duration	$\begin{aligned} & 0.57(0.39-0.85) \\ & 0.56(0.37-0.81) \end{aligned}$
AHF2	Always plain/always filter	Male	Age, cigs/day, duration + inhalation ${ }^{\text {b }}$	$\begin{aligned} & 0.92(0.65-1.29) \\ & 0.77(0.46-1.30) \end{aligned}$
		Female	Age, cigs/day, duration + inhalation ${ }^{\text {b }}$	$\begin{aligned} & 0.68(0.39-1.19) \\ & 0.87(0.56-1.33) \end{aligned}$
LUBIN	Always plain/always filter	Male	Duration, years of cessation Cigs/age, years of cessation	$\begin{aligned} & 0.56(0.47-0.66) \\ & 0.48(0.40-0.56) \end{aligned}$
		Female	Duration, years of cessation Cigs/day, years of cessation	$\begin{aligned} & 0.40(0.19-0.83) \\ & 0.43(0.22-0.85) \end{aligned}$
BENHAM	Always plain/always filter	Male	```Age + cigs/day,duration }\mp@subsup{}{}{c + inhalation, current use, tobacco type, tar```	$\begin{aligned} & 0.38(0.24-0.62) \\ & 0.70(0.52-0.94) \\ & 0.63(0.35-1.10) \end{aligned}$
ARMADA	Ever plain/always filter	Male	Age, pack-years Age, pack-years, SES, black/blond Age, SES, cigs/day, duration, black/blond	$\begin{aligned} & 0.40(0.30-0.70) \\ & 0.40(0.20-0.70) \\ & 0.41(0.30-0.70) \end{aligned}$
DEAN	Plain/filter	Male	Age + cigs/day + inhalation	$\begin{aligned} & 0.52(0.38-0.71) \\ & 0.54(0.40-0.73) \\ & 0.55(0.41-0.74) \end{aligned}$

TABLE 5.6 (Continued)

Study	Base group/comparison group	Sex	Adjustment factors	Relative risk (95\% CI)
DEAN (continued)		Female	Age + cigs/day + inhalation	$\begin{aligned} & 0.69(0.43-1.12) \\ & 0.68(0.42-1.11) \\ & 0.82(0.50-1.33) \end{aligned}$
DEAN2	Always plain/always filter	Male	Age + cigs/day	$\begin{aligned} & 0.32(0.19-0.54) \\ & 0.35(0.21-0.59) \end{aligned}$
		Female	Age + cigs/day	$\begin{aligned} & 0.31(0.16-0.62) \\ & 0.32(0.16-0.64) \end{aligned}$

a See Tables 5.1 and 5.2 for further details of studies and analyses
b Based on different source (Katat, 1996) than previous analysis (Stellman et al, 1997)
c Based on different source (Benhamou et al, 1989) than other two analyses (Benhamou et al, 1994)

TABLE 6.1
Details of studies providing evidence on risk of lung cancer in relation to tar level

Study/ Location	Population considered	Period to which tar level is relevant	Tar groupings used (mg/cig)
Prospective studies			
SIDNEY USA California	Current cigarette smokers	Brand usually smoked at baseline (1979-1985) followed until 1987	(i) $>18 \quad 11-18<11$ (ii) per mg tar
MRFIT USA Multicentre	Current cigarette smokers	Brand smoked at baseline (1973-1976) followed for 10.5 years	(i) $\$ 20 \quad 16-19 \quad \# 15$ (ii) per mg tar
CPSI USA 25 studies	Current cig. only smokers	(i) Brand smoked at first interview (1959-60) followed until 1966	High T/N Medium T/N Low T/ ${ }^{\text {a }}$
		(ii) Brand smoked at fourth interview (1965-66) followed until 1972	High T/N Medium T/N Low T/N ${ }^{\text {b }}$
SPEIZE USA Nationwide	Current cigarette smokers	Brand smoked in 1978 followed until 1992	Quartiles or tertiles ${ }^{\text {c }}$
CPSII USA Nationwide	Current cigarette smokers	Brand smoked at baseline (1982) followed until 1986	per mg tar
BENSHL England London	Current cigarette smokers	Brand smoked at baseline (1967-1969) followed for 10 years	\$ $33 \quad 24-32 \quad 18-23$
TANG 4 UK Cohorts	Current man. cig. only smokers	Brand smoked longest in 3 cohorts, at baseline in 1 cohort (1967-1982) followed for 13 years ${ }^{\text {d }}$	per mg tar

Case-control studies

WILCOX	Current cigarette	Brands smoked 1973-80 - interviewed in 1980-81	$21-28$	$17.6-21$	$14.1-17.5$	\#14.0
USA	smokers 1973-					

TABLE 6.1 (Continued)

Other study (comparison of risk factors in high and low lung cancer risk area)

WEINBE	Current cigarette	Brand smoked at interview in USA
smokers	Mean tar	
Pennsylvania		

TABLE 6.1 (Continued 2)

Notes

a For the 1960-66 follow-up, high T/N $=2.0$ to 2.7 mg nicotine and 25.8 to 35.7 mg tar, low $\mathrm{T} / \mathrm{N}=<1.2 \mathrm{mg}$ nicotine and (usually) $<17.6 \mathrm{mg}$ tar and medium T/N = intermediate, based on interview 1 (1959-1960).
${ }^{\text {b }}$ For the 1966-72 follow-up, high T/N = high as note a for interview 1 and high or medium as note a for interview 4, low T/N = low as note a for interview 1 and either low or medium as note a for interview 4 (1965-66) or as low on both interview 2 (1961-62) and interview 4.
c The authors stated tar values were divided into tertiles and then presented comparisons of the top and bottom quartiles. Actual tar values were not given.
d Average follow-up period 12.8 years, maximum 19.4 years for cohort interviewed in 1967-1970.
e 13 of 16 hospitals in Paris.
${ }^{f}$ Part of LUBIN study.

TABLE 6.2
Relative risk ($\mathbf{9 5 \%} \mathbf{\%}$ CI) of lung cancer in relation to tar yield of brand smoked

| Adjustment
 factors | Number
 of cases | Sex | | Relative risk (95\% CI) |
| :--- | :---: | :---: | :---: | :---: | :---: |

MRFIT (Kuller et al, 1991)

Age, cholesterol,	95 M
blood pressure, cigs/day	

$\frac{20+}{1.00} \quad \frac{16-19}{0.71(0.49-1.03)} \quad \frac{\# 15 \mathrm{mg} / \mathrm{cig}}{0.88(0.52-1.49)}$
blood pressure, cigs/day

Male
$\frac{\text { Per mg tar increase }}{1.03(0.98-1.07)}$

CPSI (Stellman and Garfinkel, 1989)

Age, cigs/day	822 M	Male	$\frac{\text { High }}{1.00}$	$\underline{0.90(0.70-1.04)}$	$\underline{\text { Medium }}$
$0.68(0.54-0.86)$					

CPSI (Hammond et al, 1976)

	$\underline{\text { Period 1 }{ }^{\text {a }}}$		High	Medium	Low T/N
Age, race,	341M	Male	1.00	0.96(0.75-1.24)	0.83(0.64-1.08)
cigs/day,	117F	Female	1.00	0.86(0.57-1.30)	0.57(0.36-0.91)
age start, urban/rural,	Period 2 ${ }^{\text {a }}$		High	Medium	Low T/N
occupational	245M	Male	1.00	0.94(0.70-1.27)	0.79(0.58-1.08)
exposures, education,	137F	Female	1.00	0.73(0.49-1.09)	0.62(0.41-0.94)
history of lung cancer and					

CPSII (Garfinkel and Stellman, 1988)

Age, cigs/day, inhalation	570 F	Female	$\frac{\text { Per mg tar increase }}{1.031(\mathrm{p}<0.01)}$

SPEIZE (Speizer et al, 1999)

Age, Age at	593F	Female	$\frac{\text { Top quartile }}{1.00}$
start			

TABLE 6.2 (Continued)

Adjustment factors	Number of cases	Sex			Relative risk (95\% CI)

TANG (Tang et al, 1995)
Age, study,
cigs/day $\quad 366 \mathrm{M} \quad$ Male

Case-control studies

WILCOX (Wilcox et al, 1988)

		$\underline{21-28}$	$\underline{17.6-21}$	$\underline{14.1-17.5}$	$\underline{\# 14 \mathrm{mg} / \mathrm{cig}}$	
Cigs/day,	373 M	Male $^{\mathrm{c}}$	$\underline{1.00}$	$1.16(0.72-1.86)$	$1.01(0.68-1.51)$	$0.61(0.33-1.12)$
duration $^{\text {c }}$		Male	1.00	$1.05(0.65-1.67)$	$0.89(0.60-1.32)$	$0.58(0.32-1.07)$
	Male	1.00	$1.21(0.75-1.96)$	$1.04(0.70-1.56)$	$0.61(0.32-1.13)$	

AHF2 (Wynder and Kabat, 1988)

None	682 M, Male - 492 F	Kreyberg I 	Kreyberg II Combined
	Female -	1.00	
	Kreyberg I	1.00	
	Kreyberg II	1.00	
	Combined	1.00	

$\frac{10-14}{<10}$	
$1.26(0.90-1.78)$	$1.29(0.78-2.13)$
$0.94(0.63-1.41)$	$1.33(0.71-1.48)$
$1.13(0.87-1.47)$	$1.32(0.89-1.95)$
$0.60(0.39-0.91)$	$0.77(0.44-1.34)$
$0.87(0.56-1.34)$	$1.17(0.60-2.26)$
$0.72(0.53-0.97)$	$0.93(0.61-1.42)$

KAUFMA (Kaufman et al, 1989)

Age, sex, race, region,
$170 \mathrm{M}+\mathrm{F}$
Combined
education, cigs/day, age start, year of
$99 \mathrm{M}+\mathrm{F}$
Combined interview

119 M	Male
51 F	Female

29+	22-28	$\mathrm{mg} / \mathrm{cig}$
(Brand identified for $75 \%+$ years smoking)		
1.00	0.61(0.26-1.46)	0.32(0.14-0.75)
(Brand identified for 100\% years smoking)		
1.00	0.63(0.16-2.44)	0.42(0.11-0.58)
(Brand smoked at least 10 years before admission)		
1.00	0.90(0.36-2.23)	0.25(0.08-0.82)
1.00	0.38(0.09-1.58)	0.21(0.05-0.93)

TABLE 6.2 (Continued 2)

Adjustment factors Number of cases LUBIN (Lubin et al, 1984)		Sex	Relative risk (95\% CI)					
LUBIN (Lubin et al, 1984)								
Cigs, duration, years since cessation	$\begin{gathered} 2650 \mathrm{M} \\ 313 \mathrm{~F} \end{gathered}$	Male	$\frac{\mathrm{VI}}{1.00}$	$\begin{gathered} \underline{\mathrm{V}} \\ 0.93 \\ 0.73- \\ 1.18) \end{gathered}$	$\begin{gathered} \underline{\text { IV }} \\ 0.93 \\ 0.74- \\ 1.16) \end{gathered}$	$\begin{gathered} \underline{\mathrm{III}} \\ 1.21 \\ (0.96- \\ 1.54) \end{gathered}$	$\begin{gathered} \text { II } \\ 0.86 \\ (0.67- \\ 1.10) \end{gathered}$	$\begin{gathered} \underline{\mathrm{I}}^{\mathrm{d}} \\ 0.71 \\ (0.55- \\ 0.93) \end{gathered}$
		Female		1.00	$\begin{aligned} & 0.73 \\ & 0.40- \\ & 1.33) \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0.44- \\ & 1.69) \end{aligned}$	$\begin{aligned} & 1.27 \\ & 0.67- \\ & 2.40) \end{aligned}$	$\begin{gathered} 0.67 \\ (0.38 \\ 1.18) \end{gathered}$
		Male	$\frac{100 \%}{1.00}$	High tar $\begin{gathered} \geq 75 \% \\ \hline 1.06 \\ (0.93- \\ 1.21) \end{gathered}$	$\begin{gathered} \frac{\text { Other }}{0.88} \\ (0.79- \\ 0.99) \end{gathered}$		$\begin{gathered} \text { Low tar } \\ >75 \% \\ \hline 0.71 \\ (0.43- \\ 1.56) \end{gathered}$	$\begin{gathered} \frac{100 \%}{0.59} \\ (0.45- \\ 0.77) \end{gathered}$
		Female	1.00	$\begin{gathered} 0.52 \\ (0.31- \\ 0.88) \end{gathered}$	$\begin{gathered} 0.77 \\ (0.49- \\ 1.19) \end{gathered}$			$\begin{gathered} 0.13 \\ 0.06- \\ 0.27) \end{gathered}$

BENHAM (Benhamou et al, 1994)

Age, cigs/day,	
inhalation,	1101 M
duration,	Male $^{\mathrm{e}}$
tobacco type,	
filter use ${ }^{\text {e }}$	

Use of \$ 30 mg cigarettes

$>75 \%$
1.00
1.00

$\frac{51-75 \%}{\# 50 \%}$	
$1.10(0.92-1.32)$	$0.74(0.59-0.94)$
$0.94(0.54-1.64)$	$0.79(0.52-1.20)$

filter use ${ }^{\text {e }}$

VUTUC (Vutuc and Kunze, 1982 and 1983)

Age, cigs/day, duration			≥ 24	15-24	$\leq 15 \mathrm{mg} / \mathrm{cig}^{\text {f }}$
				(Main brand)	
	248M	Male	1.00	0.56(0.37-0.86)	0.30(0.11-0.81)
	188F	Female	1.00	$0.49(0.32-0.76)$	0.29(0.09-0.95)
67M			(Brand smoked exclusively)		
	43F	Male	$1.00 \quad 0.41(0.23-0.75)$		
		Female	1.00	0.43(0.20-0.93)	0.24(0.02-3.00)

TABLE 6.2 (Continued 3)

Adjustment factors	Number of cases	Sex	Relative risk (95\% CI)

ALDERS (Alderson et al, 1985)

GILLIS (Gillis et al, 1988)

			$\frac{23+}{\# 22 ~ m g / c i g}$	
Cigs/day				
		490 M	Males	$\frac{\# 22}{1.00}$

Other study

WEINBE (Weinberg et al, 1982)

		Mean tar content None		
	$378 \mathrm{HR}^{\mathrm{h}}$	Males		
607 LR			\quad	High risk area $: 18.7 \mathrm{mg}$
:---:				
Low risk area $: 16.8 \mathrm{mg}$				
(Not significant)				

Notes

a Period $1=1960-66$, Period 2-1966-72, Numbers are "adjusted" deaths (see Hammond et al, 1976).
b The three sets of relative risks are (i) adjusted for age and employment grade only, (ii) adjusted for inhalation ever and (iii) adjusted for cigs/day also.
c The three sets of relative risks are (i) adjusted for cigs/day, (ii) adjusted for duration and (iii) adjusted for cigs/day and duration. Wilcox et al (1988) noted age adjustment had little additional effect.
d Tar categories - see Table 6.1.
e The first set of relative risks is adjusted for age only, the second set for all the variables listed.
f Results for $<15 \mathrm{mg} /$ cig based on very few cases and unreliable.
g The two sets of relative risks are (i) unadjusted and (ii) adjusted for cigs/day.
${ }^{h}$ HR $=$ high risk area (Lawrenceville), LR $=$ low risk area (South Hills).

TABLE 6.3

Relative risk ($\mathbf{9 5 \%} \mathbf{~ C I}$) of lung cancer in relation to lowest vs. highest tar level ${ }^{\text {a }}$

Sex	Study		Relative risk (95\% CI)
Male	AHF2		1.32(0.89-1.95)
	MRFIT		0.88(0.52-1.49)
	ALDERS ${ }^{\text {b }}$		0.83(0.55-1.24)
	CPSI (1960-1966)		0.83(0.64-1.08)
	BENHAM		$0.79(0.52-1.20)$
	SIDNEY		0.79 (0.41-1.50)
	CPSI (1966-1972)		0.79(0.58-1.08)
	GILLIS		0.74(0.53-1.03)
	$L^{\text {LUBIN }}{ }^{\text {c }}$		0.71(0.55-0.93)
	WILCOX		$0.61(0.32-1.13)$
	BENSHL		0.56(0.36-0.86)
	VUTUC		0.30(0.11-0.81)
	KAUFMA ${ }^{\text {b }}$		0.25(0.08-0.82)
	Combined estimate $(\mathrm{n}=13)$	Fixed-effects Random-effects	$\begin{aligned} & 0.77(0.69-0.86)^{\mathrm{d}} \\ & 0.77(0.66-0.88) \end{aligned}$
	Excluding AHF2, GILLIS, BENHAM and VUTUC $(\mathrm{n}=9)$	Fixed-effects Random-effects	$\begin{aligned} & 0.75(0.66-0.85)^{\mathrm{e}} \\ & 0.75(0.66-0.85) \end{aligned}$
Female	SIDNEY		1.49(0.76-2.94)
	ALDERS ${ }^{\text {b }}$		1.12(0.74-1.70)
	SPEIZE		$1.00(0.71-1.43)$
	AHF2		0.93(0.61-1.42)
	$L^{\prime} \mathrm{UBIN}^{\text {c }}$		0.67(0.38-1.18)
	CPSI (1966-1972)		0.62(0.41-0.94)
	CPSI (1960-1966)		0.57(0.36-0.91)
	VUTUC		0.29(0.09-0.95)
	KAUFMA ${ }^{\text {b }}$		0.21(0.05-0.93)
	Combined estimate ($\mathrm{n}=9$)	Fixed-effects Random-effects	$\begin{aligned} & 0.82(0.70-0.97)^{\mathrm{f}} \\ & 0.79(0.60-1.02) \end{aligned}$
	Excluding AHF2, SPEIZE, and VUTUC $(\mathrm{n}=6)$	Fixed-effects Random-effects	$\begin{aligned} & 0.77(0.62-0.95)^{\mathrm{g}} \\ & 0.75(0.52-1.09) \end{aligned}$
Sexes combined	Combined estimate $(\mathrm{n}=22)$	Fixed-effects Random-effects	$\begin{aligned} & 0.79(0.72-0.86)^{\mathrm{h}} \\ & 0.77(0.68-0.88) \end{aligned}$
	Exclusions as for two sexes $(\mathrm{n}=15)$	Fixed-effects Random-effects	$\begin{aligned} & 0.75(0.67-0.84)^{i} \\ & 0.74(0.65-0.86) \end{aligned}$

TABLE 6.3 (Continued)

Notes

${ }^{a}$ See Tables 6.1 and 6.2 for further details of studies and comparisons made
b Brand smoked 10 years before admission.
c Categories based on mean tar level, not use of high and low tar brands.
d Heterogeneity chisquared 18.00 on 12 d.f. (Not significant).
e Heterogeneity chisquared 7.03 on 8 d.f. (Not significant).
f Heterogeneity chisquared 17.65 on 8 d.f. (p <0.05).
g Heterogeneity chisquared 12.71 on 5 d.f. (p <0.05).
${ }^{\mathrm{h}}$ Heterogeneity chisquared 36.01 on 21 d.f. $(\mathrm{p}<0.05$).
j Heterogeneity chisquared 19.78 on 14 d.f. (Not significant).

TABLE 7.1

Relative risk ($\mathbf{9 5 \%} \mathbf{~ C I}$) of lung cancer in hand rolled vs. manufactured cigarette smokers (current + former smokers ${ }^{\text {a }}$, all cell types)

				Relative risk (95\% CI)		
			Manuf	Ever	Mixed	Hand
Study	Adjustment factors		only (base)	hand rolled	manuf/	rolled
details	Number of cases	Sex		HR	only	

$\underline{\text { HU (Hu et al, 1997) }}$

China	Unadjusted	Male	1.00	$1.27(0.74-2.19)$	$1.34(0.59-3.05)$	$1.24(0.68-2.25)$
Heilongjiang		Female	1.00	$2.89(0.79-10.5)$	$5.14(0.47-56.9)$	$2.57(0.67-9.83)$
Case-control	$118 \mathrm{M}+25 \mathrm{~F}$ cases					
$1985-1987$						

FU (Fu and Gou, 1984)

China	Adjusted for district	Combined	1.00	-	-
Harbin				$1.22(0.83-1.78)$	
Case-control	$300 \mathrm{M}+\mathrm{F}$ cases				
$1977-1979$					

CHAN (Chan et al, 1979)

Hong Kong	Unadjusted	Male	1.00	$1.40(0.80-2.46)$	$1.39(0.78-2.47)$	$1.65(0.15-18.4)$
Case-control		Female	1.00	$0.47(0.22-1.01)$	$0.51(0.23-1.13)$	$0.41(0.15-1.08)$
$1976-1977$	$206 \mathrm{M}+105 \mathrm{~F}$ cases					

MACLEN (Maclennan et al, 1977)

Singapore	Unadjusted	Male	1.00	$1.64(0.96-2.79)$	$1.77(1.01-3.10)$	$0.98(0.27-3.50)$
Case-control		Female	1.00	$0.69(0.31-1.52)$	$1.31(0.47-3.66)$	$0.40(0.14-1.09)$

DESTEF1 (De Stefani et al, 1996a)

Uruguay Montevideo	Adjusted for age, residence, urban/rural,	Male	1.00	$1.67(1.22-2.30)^{\mathrm{b}}$	-
Case-control education					

DESTEF2 (De Stefani et al, 1996b)
$\left.\begin{array}{llllll}\begin{array}{lll}\text { Uruguay } \\ \text { Montevideo } \\ \text { Case-control }\end{array} & \begin{array}{l}\text { Adjusted for age, } \\ \text { residence, }\end{array} & \text { Male } & 1.00 & 2.00(1.28-3.12)^{\mathrm{b}} & - \\ \text { urban/rural, }\end{array}\right)$

TABLE 7.1 (Continued)

Study details	Adjustment factors Number of cases	Sex	Relative risk (95\% CI)			
			Manuf only (base)	Ever hand rolled	Mixed manuf/ HR	Hand rolled only
BUFFLE (Ives, 1984)						
USA	Unadjusted	Female	1.00	$2.39(1.11-5.13)^{\text {c }}$	-	-
Texas						
Case-control 208F cases1976-1980						
BENHAM (Benhamou et al, 1989)						
France Paris	Adjusted for age, cigs/day, duration	Male	1.00	1.28(0.98-1.67)	1.38(0.84-2.26)	1.25(0.92-1.69)
Case-control						
1976-1980	1031M cases					

ENGELA (Engeland et al, 1996)

Norway	Adjusted for age	Male $^{\mathrm{e}}$	1.00	$1.06(0.79-1.43)$	$0.63(0.38-1.05)$	$1.20(0.88-1.63)$
Nationwide		Female $^{\mathrm{e}}$	1.00	$1.56(0.91-2.69)$	$1.28(0.58-2.81)$	$1.73(0.96-3.15)$
Prospective	$244 \mathrm{M}+63 \mathrm{~F}$ cases					
$1964+1965$						
followed						
to 1993						

ALDERS (Alderson et al, 1985)
$\begin{array}{lllllll}\text { England } & \text { Adjusted for age, } & \text { Male } & 1.00 & 1.46(1.11-1.91) & 1.39(1.04-1.85) & 1.95(1.01-3.77)\end{array}$

Multicentre
Case-control
1977-1982 cigs/day

576M cases

HAWTHO (Hawthorn and Fry, 1978)

Scotland	Adjusted for age,	Male	1.00	$1.94(0.95-3.97)^{\text {c }}$		
West Central	cigs/day, substudy					
Prospective						
1965-1975	88M cases					
followed to 1977						

MIGRAN (Lee, 1979)
$\begin{array}{llllllll}\text { UK } & \text { Adjusted for age, } & \text { Male } & 1.00 & 1.67(1.11-2.51) & 1.65(0.87-3.13) & 1.73(1.07-2.81)\end{array}$
Nationwide cigs/day
Prospective
1964-1965 136M cases
followed
to 1977

TABLE 7.1 (Continued 2)

Notes

Except where stated.
b The comparison was between hand rolled and manufactured with no indication of whether this was actually hand rolled only vs. ever manufactured or ever rolled vs. manufactured only.
c The comparison is based on brand usually smoked.
${ }^{d} 16$ hospitals, 13 in Paris.
e Results for current smokers only.

T50
TABLE 7.2
Meta-analyses for hand rolled vs. manufactured

Sex	Manuf only (base)		Meta-analysis relative risks ($95 \% \mathrm{CI}$)		
			Ever hand rolled	Mixed manuf/HR	Hand rolled only
Male	1.00	Fixed effects	1.43(1.27-1.61)	1.30(1.09-1.56)	1.33(1.11-1.59)
		Random effects	$\begin{gathered} 1.43(1.27-1.62) \\ (\mathrm{n}=10) \end{gathered}$	$\begin{gathered} 1.30(1.01-1.66) \\ (\mathrm{n}=7) \end{gathered}$	$\begin{gathered} 1.33(1.11-1.59) \\ (\mathrm{n}=7) \end{gathered}$
Female	1.00	Fixed effects	$1.21(0.87-1.69)^{\text {a }}$	0.97(0.60-1.57)	1.06 (0.69-1.63) ${ }^{\text {a }}$
		Random effects	$\begin{gathered} 1.22(0.64-2.32) \\ (\mathrm{n}=5) \end{gathered}$	$\begin{gathered} 1.04(0.53-2.06) \\ (\mathrm{n}=4) \end{gathered}$	$\begin{gathered} 0.92(0.37-2.29) \\ (\mathrm{n}=4) \end{gathered}$
All estimates	1.00	Fixed effects	1.41(1.26-1.57)	1.26(1.06-1.49)	1.27(1.09-1.48)
		Random effects	$\begin{gathered} 1.42(1.21-1.66) \\ (\mathrm{n}=15) \end{gathered}$	$\begin{gathered} 1.23(0.97-1.57) \\ (\mathrm{n}=11) \end{gathered}$	$\begin{gathered} 1.27(1.04-1.55) \\ (\mathrm{n}=12) \end{gathered}$

Notes
n indicates number of estimates on which meta-analysis is based.
Based on data in Table 7.1.
Significant heterogeneity between estimates ($\mathrm{p}<0.05$).

TABLE 7.3

Relative risk ($\mathbf{9 5 \%}$ CI) of lung cancer for hand rolled compared to manufactured cigarette smokers - by histological type ${ }^{\text {a }}$

Study	Sex	Lung cancer type	Manuf only (base)	Relative risk (95\% CI)		
				Ever hand rolled	Mixed manuf/HR	Hand rolled only
DESTEF $1^{\text {b }}$	Male	All types	1.00	1.6(1.2-2.3)	2.3(1.5-3.4)	1.3(0.9-1.8)
		Squamous cell	1.00	1.2(0.8-1.8)	1.6(0.9-2.6)	0.9(0.6-1.5)
		Small cell	1.00	4.5(1.9-10.9)	5.3(2.1-13.8)	4.1(1.6-10.2)
		Adenocarcinoma	1.00	2.3(1.3-4.3)	3.3(1.7-6.5)	1.8(0.9-3.5)
		Large cell	1.00	0.8(0.3-2.0)	1.4(0.5-4.2)	0.6(0.2-1.8)
BENHAM ${ }^{\text {c }}$	Male	Kreyberg I	1.00	1.28(0.99-1.66)	1.32(0.95-1.81)	1.22(0.83-1.79)
ENGELA ${ }^{\text {d }}$	Male	All types	1.00	1.06(0.79-1.43)	0.63(0.38-1.05)	1.20(0.88-1.63)
		Squamous cell	1.00	1.91(1.00-3.64)	1.2(0.5-2.8)	2.1(1.1-4.1)
		Small cell	1.00	0.73(0.32-1.67)	0.3(0.1-1.3)	1.0(0.4-2.2)
		Adenocarcinoma	1.00	0.43(0.18-1.00)	0.3(0.1-1.2)	0.5(0.2-1.2)
Notes						
See Table 7.1 for further details of studies.	See Table 7.1 for further details of studies.					
From De Stefani et al (1994), adjusted for age, residence, education, pack years and black/blond.						
From Benhamou et al (1985), adjusted for cigs/day, duration, inhalation, social class, black/blond, current/ex and filter/plain, but not age.	From Benhamou et al (1985), adjusted for cigs/day, duration, inhalation, social class, black/blond, current/ex and filter/plain, but not age.					
From	From Engeland et al (1996), adjusted for age only.					

TABLE 8.1

Relative risk (95% CI) of lung cancer for smokers of black(dark) cigarettes compared to smokers of blond (light) cigarettes (current + former smokers ${ }^{\text {a }}$, all cell types)

Study details	Adjustment factors Number of cases	Sex	Relative risk (95\% CI)			
			Blond only (base)	Ever black	Mixed black/ blond	Black only
MATOS (Matos et al, 1998)						
Argentina Buenos-Aires Case-control 1994-1996	Adjusted for age. hospital, cigs/day	Male	1.00	$1.31(0.85-2.02)$	1.33(0.84-2.11)	1.25(0.71-2.50)
	187M cases	[Current smokers]	1.00	1.29(0.76-2.19)	1.32(0.73-2.38)	1.25(0.56-2.50)
		[Exsmokers]	1.00	1.76(0.96-3.25)	1.82(0.92-3.59)	1.67(0.67-3.33)
PEZZOT (Pezzotto et al, 1993)						
Argentina Rosario Case-control 1987-1991	Adjusted for age, hospital, cigs/day, years of smoking	Male	1.00	1.70(1.19-2.43)	-	-
	211 M cases					

SUZUKI (Suzuki et al, 1994)

Brazil	Adjusted for age,	Combined	1.00	2.8(1.0-7.7)	-	-
Rio de Janeiro	sex, race, pack-	[Adj. for	1.00	$3.7(1.6-8.6)$	-	-
Case-control	years	age, sex,				
1991-1992		race only]				
	$112 \mathrm{M}+\mathrm{F}$ cases					
JOLY (Joly et a	1983)					
Cuba	Unadjusted	Male	1.00	1.25(0.56-2.78)	$1.09(0.38-3.16)$	1.26(0.57-2.79)
Havana		Female	1.00	1.73(0.85-3.53)	1.12(0.43-2.90)	1.88(0.92-3.86)
Case-control 1978-1980	$552 \mathrm{M}+165 \mathrm{~F}$ cases					

DESTEF1 (De Stefani et al, 1996a)

| | Uruguay | Adjusted for age, | Male | 1.00 | $1.89(1.41-2.52)$ | $2.23(1.43-3.47)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 1.79(1.31-2.43)$

Montevideo
Case-control
1988-1994
residence, urban/rural status, education

470M cases

TABLE 8.1 (Continued)

Study details	Adjustment factors Number of cases	Sex	Relative risk (95\% CI)			
			Blond only (base)	Ever black	Mixed black/ blond	Black only
DESTEF2 (De Stefani et al, 1996b)						
Uruguay Montevideo Case-control 1993-1996	Adjusted for age, residence, urban/ rural status, education, BMI, family history LC 300 M cases	Male	1.00	$2.38(1.62-3.52)^{\text {b }}$	-	-
BENHAM (Benhamou et al, 1994)						
France Paris ${ }^{\text {c }}$ Case-control 1976-1980	Adjusted for age, cigs/day, duration, inhalation, current/ ex, filter/plain, tar	Male [Adj. for age only]	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.73(0.92-3.26) \\ & 3.41(2.00-5.81) \end{aligned}$	$\begin{aligned} & 2.6(1.1-6.5) \\ & 4.4(1.9-10.3) \end{aligned}$	$\begin{aligned} & 1.7(0.9-3.2) \\ & 3.4(2.0-5.8) \end{aligned}$
	1114 M cases					

BENHAM (Benhamou et al, 1987)

France	Adjusted for age,	Female	$1.00^{\text {d }}$	2.04(0.75-5.57)	$1.66(0.31-8.84)^{\text {d }}$	2.13(0.75-6.01)
Paris ${ }^{\text {c }}$	hospital,					
Case-control	interviewer					
1976-1980						
	46F cases					

BERRIN (Benhamou and Benhamou, 1993)

Italy	Adjusted for age,	Male	1.00	$1.30(0.98-1.73)$	$1.15(0.86-1.53)$	$1.60(1.19-2.15)$
Milan	residence, cigs/ Case-control	day, filter/plain, $1977-1980$ years since quit				

TABLE 8.1 (Continued 2)

Study details	Adjustment factors Number of cases	Sex	Relative risk (95\% CI)			
			Blond only (base)	Ever black	Mixed black/ blond	Black only
$\underline{\text { AGUDO (Agudo et al, 1994) }}$						
Spain Barcelona Case-control 1989-1992	Adjusted for age, residence, hospital 23 F cases	Female	1.00	2.63(0.56-12.30)	-	-
$\underline{\text { ARMADA (Armada et al, 1999) }}$						
Spain Barcelona	Adjusted for age, pack-years	Male	1.00	-	4.9(1.7-13.7)	5.3(2.1-13.6)
Case-control1986-1990	Adjusted for age, SES, duration, cigs/day, filter/plain	Male	1.00	4.68(1.9-11.8)	-	
	[Adjusted for age, SES, pack-years filter/plain only]	Male	1.00	5.04(2.0-12.7)	-	-
	317 M cases					

$\frac{\text { Notes }}{a}$

a Except where stated.
b The comparison was between "blond" and "black" with no indication of whether this was actually blond only vs. ever black or ever blond vs. black only.
c Conducted in 16 hospitals, 13 in Paris.
d The reference group (base) is $\leq 50 \%$ dark tobacco, with $51-100 \%$ dark taken as ever black and $51-99 \%$ dark taken as mixed in the table.

TABLE 8.2
Meta-analyses for black (dark) vs blond (light)

Sex	Blond only (base)		Meta-analysis relative risk ($95 \% \mathrm{CI}$)		
			Ever black	Mixed black/blond	Black only
Male	1.00	Fixed-effects Random-effects	$\begin{aligned} & 1.69(1.46-1.94) \\ & 1.73(1.39-2.14) \end{aligned}$	$\begin{aligned} & 1.49(1.22-1.81) \\ & 1.72(1.17-2.54) \end{aligned}$	$\begin{aligned} & 1.69 \text { (1.41-2.04) } \\ & 1.71 \text { (1.33-2.20) } \end{aligned}$
			$(\mathrm{n}=8)$	$(\mathrm{n}=6)$	$(\mathrm{n}=6)$
Female	1.00	Fixed-effects Random-effects	$\begin{aligned} & 1.91 \text { (1.11-3.29) } \\ & 1.91 \text { (1.11-3.29) } \end{aligned}$	$\begin{aligned} & 1.23(0.54-2.83) \\ & 1.23(0.54-2.83) \end{aligned}$	$\begin{aligned} & 1.96(1.08-3.53) \\ & 1.96 \text { (1.08-3.53) } \end{aligned}$
			$(\mathrm{n}=3)$	$(\mathrm{n}=2)$	$(\mathrm{n}=2)$
All estimates	1.00	Fixed-effects Random-effects	$\begin{aligned} & 1.71 \text { (1.50-1.96) } \\ & 1.75 \text { (1.47-2.09) } \end{aligned}$	$\begin{aligned} & 1.47 \text { (1.21-1.79) } \\ & 1.63 \text { (1.18-2.27) } \end{aligned}$	$\begin{aligned} & 1.72(1.44-2.05) \\ & 1.72 \text { (1.42-2.09) } \end{aligned}$
			$(\mathrm{n}=12)$	$(\mathrm{n}=8)$	($\mathrm{n}=8$)

Notes
$\overline{\mathrm{n} \text { indicates number of estimates on which meta-analysis is based. Based on data in Table 8.1. }}$

TABLE 8.3

Relative risk (95% CI) of lung cancer for ever smokers of black (dark) cigarettes compared to smokers of blond (light) cigarettes only - by histological type ${ }^{\text {a }}$

Study	Sex	All types	Squamous carcinoma	Adenocarcinoma	Small cell
MATOS	Male	1.31 (0.85-2.02)	2.67 (1.35-5.30)	1.63 (0.93-2.86)	-
PEZZOT	Male	1.70 (1.19-2.43)	1.30 (0.73-2.31)	2.00 (1.03-3.90)	1.50 (0.63-3.58)
DESTEF1 ${ }^{\text {b }}$	Male	2.12 (1.29-3.46) ${ }^{\text {c }}$	2.75 (1.46-5.18)	1.75 (0.76-4.07)	2.03 (0.67-6.08)
DESTEF2 ${ }^{\text {d }}$	Male	1.78 (1.15-2.76)	1.77 (0.96-3.26)	1.20 (0.54-2.63)	-
BENHAM ${ }^{\text {e }}$	Male	-	3.63 (2.05-6.42) ${ }^{\text {f }}$	-	-
4 studies (excluding BENHAM)	Fixed-effects Random-effects	$\begin{aligned} & 1.68(1.36-2.08) \\ & 1.68(1.36-2.08) \end{aligned}$	$\begin{aligned} & 1.96(1.44-2.67) \\ & 1.98(1.38-2.82) \end{aligned}$	$\begin{aligned} & 1.64(1.17-2.32) \\ & 1.64(1.17-2.32) \end{aligned}$	-

Notes

${ }^{\text {a }}$ See Table 8.1 for references, details of studies and adjustment factors used except where stated.
${ }^{\text {b }}$ From De Stefani et al (1992). Adjusted for age, residence, urban/rural, education, cigs/day, duration, years since quit, filter/plain.
${ }^{\text {c }}$ All cases with histology. $2.73(0.82-9.12)$ for other types of lung cancer.
${ }^{\text {d }}$ From De Stefani et al (1996c), for men never exposed to asbestos.
${ }^{e}$ From Benhamou et al (1985).
${ }^{f}$ Results only given for Kreyberg I.

TABLE 9.1

Relative risk ($\mathbf{9 5 \%} \mathbf{~ C I}$) of lung cancer in mentholated vs non-mentholated cigarette smokers

TABLE 9.1 (Continued)

Notes

${ }^{a}$ Numbers of cases are those considered in the analyses.
${ }^{\mathrm{b}}$ All lung cancer types unless stated.
${ }^{\text {c }}$ Current smokers defined as smokers in year preceding diagnosis.
${ }^{d}$ Only statistically significant trends are indicated.

TABLE 9.2

Mentholated cigarettes - meta-analysis of results for regular use

		Relative risk (95\% CI)	
Study	Comparison $^{\text {a }}$	Men	Women
AHF2	15+ vs. <1 yrs menthol use	$0.98(0.70-1.38)$	$0.76(0.53-1.16)$
SIDNEY	20+ vs. 0 yrs menthol use	$1.59(0.96-2.63)$	$0.70(0.40-1.23)$
CARPEN	32+ vs. 0 pack-years of menthol	$1.48(0.71-3.05)$	$0.41(0.15-1.11)$
Combined	Fixed-effects		$1.18(0.91-1.53)$
	Random-effects	$1.23(0.88-1.72)$	$0.70(0.52-0.95)$
			$0.70(0.52-0.95)$

Notes
${ }^{\text {a }}$ See Table 9.1 for details of adjustment factors and other study details.

TABLE 9.3
Relative risk ($\mathbf{9 5 \%} \mathbf{~ C I}$) of lung cancer by nicotine level of brand smoked

Study details	Population considered, adjustment factors and number of cases ${ }^{\text {a }}$	Sex	
MRFIT (Kuller et al, 1991)	Male	$\frac{1.5+\text { (base }^{1}}{1.00}$	Relative risk (95\% CI)

Notes

Number of cases considered in analyses.
b $\quad \mathrm{RR}$ and CI converted from values given with $\leq 1.0 \mathrm{mg}$ as base.
c Estimated from regression coefficients and standard errors.

TABLE 9.4

Relative risk ($\mathbf{9 5 \%} \mathbf{~ C I}$) of lung cancer in bidi vs. cigarette smokers

Study details	Population considered, adjustment factors and number of cases	Sex - cigs/day, duration, religion		Relative risk (95\% CI)	
NOTANI (Notani et al, 1977)			Product smoked		
India Bombay Case- control 1963-1971	Smokers of bidis or cigarettes	Male -	Cigs only (base)	Mixed	Bidis only
		Total (unadjusted)	1.00	0.70 (0.43-1.13)	1.38 (1.01-1.88)
	Unadjusted for any variables except where stated	<10/day	1.00		3.76 (1.53-9.23)
		10-19/day	1.00		1.15 (0.68-1.94)
		20+/day	1.00		1.07 (0.67-1.70)
	549 M cases	Total (adjusted for cigs/day)	1.00		1.38 (1.01-1.88)
JUSSAW (Jussawalla and Jain, 1979)			Product smoked		
India Bombay Case- control 1964-1973	Smokers of bidis or cigarettes	Male -	Cigs only (base)	Mixed	Bidis only
		Total (unadjusted)	1.00	6.72 (2.78-16.2)	3.24 (2.25-4.68)
	Unadjusted for any variables except where stated	<10/day	1.00		5.00 (2.19-11.4)
		10-19/day	1.00		3.54 (2.08-6.04)
		20+/day	1.00		2.68 (1.17-6.14)
	643 M cases	Total (adjusted for cigs/day)	1.00		3.60 (2.43-5.34)
		<20 years	1.00		2.19 (1.30-3.70)
		20-29 years	1.00		5.03 (2.49-1.02)
		30+ years	1.00		4.14 (1.84-9.33)
		Total (adjusted for duration)	1.00		3.17 (2.18-4.61)
		Hindus	1.00	7.86 (1.76-35.2)	2.81 (1.64-4.81)
		Muslims	1.00	5.43 (1.15-25.7)	1.97 (0.94-4.14)
		Christians	1.00	5.33 (1.10-26.0) ${ }^{\text {a }}$	6.26 (2.39-16.4)
		Others	1.00		1.71 (0.26-11.4)
		Total (adjusted for religion)	1.00	6.15 (2.52-15.0)	2.84 (1.93-42.0)

TABLE 9.5
Relative risk ($\mathbf{9 5 \%} \mathbf{~ C I}$) of lung cancer in smokers of brands local and not local to Okinawa

Study details	Population considered, adjustment factors and numbers of cases	Sex - lung cancer type	Relative risk (95\% CI)
WAKAI (Wakai et al, 1977)		Brand smoked	

TABLE 9.6
Relative risk ($\mathbf{9 5 \%} \mathbf{~ C I}$) of lung cancer in pillia ${ }^{\text {a }}$ vs. pölli smokers ${ }^{\text {b }}$

	Population considered, adjustment factors and number Study cases details	Sex		
PERNU (Pernu, 1960)		Relative risks (95\% CI)		

Notes

Pillis have an attached "holder" made of cardboard, but no actual filter.
${ }^{b}$ Pöllis include short cigarettes smoked with short wooden mouthpiece and cigarettes of American-type.

TABLE 10.1
Summary of meta-analyses for major cigarette type comparisons

Comparison	Sex/histological type	Numbe Total (f estimates nificant) ${ }^{a}$	Meta analysis relative risk ($95 \% \mathrm{CI}$)
Filter/plain ${ }^{\text {b }}$	Males	28	(13-)	0.58(0.55-0.62)
	Females	14	(5-)	0.67(0.59-0.75)
	Sexes combined	43	(19-)	0.59(0.56-0.63)
	Sexes combined - sq. carcinoma ${ }^{\text {b }}$	11	(4-)	0.56(0.50-0.62)
	- adenocarcinoma ${ }^{\text {c }}$	8	(2-)	0.84(0.71-1.00)
Low tar/high tar ${ }^{\text {c }}$	Males	13	(4-)	0.77(0.69-0.86)
	Females	9	(4-)	0.82(0.70-0.97)
	Sexes combined	22	(8-)	0.79(0.72-0.86)
Ever hand rolled/ manuf. cigs only ${ }^{\text {d }}$	Males	10	(4+)	1.43(1.27-1.61)
	Females	5	(1+)	1.21(0.87-1.69)
	Sexes combined	15	(5+)	1.41(1.26-1.57)
Ever black/ blond only ${ }^{\mathrm{e}}$	Males	8	(4+)	1.69(1.46-1.94)
	Females	3	(0)	1.91(1.11-3.29)
	Sexes combined	12	(5+)	1.71(1.50-1.96)
Mentholated/non	Males	3	(0)	1.18(0.91-1.53)
mentholated	Females	3	(0)	0.70(0.52-0.95)
cigarettes $^{\text {f }}$	Sexes combined	6	(0)	0.94(0.78-1.15)

[^3]
[^0]: ${ }^{\text {a }} \quad 13$ of 16 hospitals in Paris
 b Part of Lubin study
 c Switching analyses exclude those changing number of cigarettes smoked

[^1]: ${ }^{a}$ Number of cases in analysis described except where specified
 b Numbers of cases shown are all cases in study
 c CI estimates very approximate
 d $H R=$ high risk area (Lawrenceville), LR = low risk area (South Hills)

[^2]: ${ }^{\text {a }}$ See Tables 5.1 and 5.2 for further details of studies and analyses
 b Very approximate estimate
 c Heterogeneity chisquared 140.74 on 27 d.f. ($\mathrm{p}<0.001$)
 d Heterogeneity chisquared 111.83 on 24 d.f. ($\mathrm{p}<0.001$)
 e Heterogeneity chisquared 27.61 on 13 d.f. $(\mathrm{p}<0.05)$
 f Heterogeneity chisquared 23.23 on 11 d.f. ($p<0.05$)
 g Heterogeneity chisquared 172.53 on 42 d.f. ($\mathrm{p}<0.001$)
 ${ }^{\mathrm{h}}$ Heterogeneity chisquared 136.15 on 37 d.f. $(\mathrm{P}<0.001)$

[^3]: Notes
 ${ }^{\text {a }} \mathrm{n}$ - implies n decreases significant at $\mathrm{p}<0.05, \mathrm{n}+$ indicates significant increases.
 ${ }^{\mathrm{b}}$ Using most extreme groups for comparison where more than two groups being compared.
 c Lowest vs. highest tar groups from data provided.
 ${ }^{\text {d }}$ See Table 7.2 for meta-analyses for hand rolled only and mixed hand rolled/manufactured.
 ${ }^{\text {e }}$ See Table 8.2 for meta-analyses for black only and mixed black/blond.
 ${ }^{f}$ Regular menthol vs. no or minimal menthol use.

