Dose-response relationship of lung cancer to amount smoked, duration and age starting

John S Fry, Peter N Lee, Barbara A Forey, Katharine J Coombs

Published in World Journal of Meta-Analysis 2013 August 26; 1(2): 57-77

Additional file 1 - Goodness of Fit

1. Introduction

Additional file 1 describes the method used to estimate a fitted table of pseudo-numbers based on the observed table and the fitted relative risk (RR) estimates. The method differs for prospective studies, where only fitted numbers of cases are derived, and case-control studies, where fitted numbers of both cases and controls are derived. It also describes the tests of goodness-of-fit to the models used.

2. *Prospective studies*

With two exposed levels, we have an observed table of pseudo-numbers:

Level	<u>Cases</u>	<u>At risk</u>
Baseline	A_0	N_0
Low exposure	A ₁	N_1
High exposure	A ₂	N_2
Total	As	N_S

We have fitted a set of RRs: R_0 , R_1 , R_2 (where $R_0 = 1$)

We wish to derive a set of fitted cases: F_0 , F_1 , F_2

We have the following formulae:

$$F_0 + F_1 + F_2 = A_s$$
 (marginal totals stay the same) (1)

$$R_1 = (F_1 N_0) / (F_0 N_1)$$
⁽²⁾

$$R_2 = (F_2 N_0) / (F_0 N_2)$$
(3)

From (2)
$$F_1 = F_0 N_1 R_1 / N_0$$
 (4)

From (3)
$$F_2 = F_0 N_2 R_2 / N_0$$
 (5)

From (1,4,5)
$$F_0 + \frac{F_0 N_1 R_1}{N_0} + \frac{F_0 N_2 R_2}{N_0} = A_S$$
 (6)

so
$$F_0 N_0 + F_0 N_1 R_1 + F_0 N_2 R_2 = A_S N_0$$
 (7)

$$F_0 = (A_s N_0 R_0) / \sum_{i=0}^{2} (N_i R_i)$$
(8)

From (4,8)
$$F_1 = (A_s N_1 R_1) / \sum_{i=0}^{2} (N_i R_i)$$
 (9)

From (5,8)
$$F_2 = (A_5 N_2 R_2) / \sum_{i=0}^{2} (N_i R_i)$$
 (10)

This allows derivation of fitted values and is clearly generalizable to multiple exposure levels (k).

A chisquared test of goodness-of-fit on k-1 df is then derived in the usual way from the formula:

$$\chi^{2} = \sum_{i=0}^{k} (A_{i} - F_{i})^{2} / F_{i}$$

3. *Case-control studies*

Here the observed table of pseudo-numbers is:

Level	Cases	<u>Controls</u>	<u>Total</u>
Baseline	A_0	B ₀	C_0
Level 1	A_1	B ₁	C ₁
Level 2	A_2	B ₂	C ₂
Total	A_S	B _S	Cs

The expected table of fitted numbers is:

Level	Cases	<u>Controls</u>	
Baseline	Fo	G ₀	
Level 1	F_1	G ₁	
Level 2	F_2	G ₂	

We have fitted RRs: R_0 , R_1 , R_2 (where $R_0 = 1$)

We can write down the following formulae based on the marginal totals and the RRs:

$F_0 + G_0 = C_0$ (1)	1)
-----------------------	----

- $F_1 + G_1 = C_1$ (12)
- $F_2 + G_2 = C_2 \tag{13}$
- $F_0 + F_1 + F_2 = A_S \tag{14}$
- $R_1 = F_1 G_0 / (F_0 G_1) \tag{15}$

$$R_2 = F_2 G_0 / (F_0 G_2) \tag{16}$$

From (15)
$$G_1 = F_1 G_0 / (F_0 R_1)$$
 (17)

From (16)
$$G_2 = F_2 G_0 / (F_0 R_2)$$
 (18)

From (12,15)
$$F_1 + F_1G_0/(F_0R_1) = C_1$$
 (19)

or
$$F_0F_1R_1 + F_1G_0 = C_1F_0R_1$$
 (20)

From (11)
$$F_0F_1R_1 + F_1(C_0 - F_0) = C_1F_0R_1$$
 (21)

or
$$F_1 = C_1 F_0 R_1 / (F_0 R_1 + C_0 - F_0)$$
 (22)

Similarly
$$F_2 = C_2 F_0 R_2 / (F_0 R_2 + C_0 - F_0)$$
 (23)

From (14,22,23)
$$F_0 + \frac{C_1 F_0 R_1}{(F_0 R_1 + C_0 - F_0)} + \frac{C_2 F_0 R_2}{(F_0 R_2 + C_0 - F_0)} = A_S$$
 (24)

This is an equation in F_0 only, which can be solved using standard Newton-Raphson methodology.

Formula (22) gives F_1 in terms of F_0 , while formula (23) gives F_2 in terms of F_0 . Formulae (11,12,13) then give G_i in terms of F_i

This gives the whole table of fitted numbers. A chisquared test of goodness-of-fit on 2k-1 df is then derived using the formula:

$$\chi^{2} = \sum_{i=0}^{k} (A_{i} - F_{i})^{2} / F_{i} + \sum_{i=0}^{k} (B_{i} - G_{i})^{2} / G_{i}$$